CRACK SA-MP 0.2x
V první řadě si stáhneš originální hru bez jakýchkoliv modifikací která má asi 4gb jsou i menší verze v dnešní době.Potom si stáhneš crack např. /files/GTA_SA.rar a nahradíš ve složce s hrou gta_sa.exe v případě potřeby crack přejmenuj z GTA_SA.exe na gta_sa.exeA potom si nainstaluješ do složky s hrou např. ještě stále používanou 0.3.7 (klient)Otevřeš klient do horního pole si dáš své jméno, přidáš si nějaký server pak na něj klikneš a klikneš na Connect.Žádná věda :D
CRACK SA-MP 0.2x
kikinka478, musíš si stáhnout originální hru GTA SA, potom crack/patch na který můžeš najít odkaz i zde v informacích nahoře a následně nainstalovat SA-MP klient do složky kde máš hru (kde máš gta_sa.exe). Pak už jen zadáš do kolonky své jméno, přidáš server který musí fungovat na stejné verzi jako tu co máš nainstalovanou což nejnovější je 0.3.7 pak ještě ne úplně oficiální ale spíš experimentální 0.3.dl a připojíš se na něj.
Nemáš ve hře nějaké cheaty, modely vozidel ... nebo špatný crack? Pokud máš čistou hru, funkční crack a připojuješ se na server který má verzi stejnou jako klient který máš nainstalovaný tak to musí fungovat.
Pro funkční hru je potřeba nainstalovat Grand Theft Auto San Andreas, cracknout ho nebo v našem případě patchnout (nahoře máš odkaz na patch) a následně do hry nainstalovat SA-MP ... A neměl by jsi mít problém. Nahoře máš i návod pokud máš GTA na Steamu.
Stáhni si třeba program Bitcomet a stáhni si GTA torrent např. zde (snad bude fungovat) torrentsgames.org/pc/grand-theft-auto-san-andreas-pc.html potom si ještě musíš stáhnout crack .exe a vložit ho do hry až jí nainstaluješ a pak do hry nainstaluješ 0.3.7 klient.
Nemohu ti to říci jednodušeji zkrátka popíšu krok za korkem.1) Stáhneš čistou hru.2) Nainstaluješ hru.3) Stáhneš funkční crack ve formátu gta_sa.exe4) Vložíš crack do hry tudíž do složky se hrou5) Stáhneš si SA-MP 0.3.7 klient6) Nainstaluješ a pak spustíš klient, přidáš si nějaké adresy serveru co najdeš a hraješ ...Si najdi video návod na youtube pokud to nechápeš.
Mě je přes 20 každopádně na věku nezáleží, jednoduše stáhni si Bitcomet a najdi si na google GTA San Andreas Torrent a stáhneš přes ten Bitcomet potom si stáhneš crack a ten vložíš až nainstaluješ GTA do složky kde máš GTA nahradíš tím gta_sa.exe a pak už jen stáhneš SA-MP 0.3z a hraješ :)
Jednoduše stáhni si SAMP client 0.3x (nejnovější) a klikej na Next. V případě že nemáš GTA:San Andreas tak si nejdřív stáhni třeba přes torrent GTA:SA potom si stáhneš crack dáš do složky kde máš GTA:SA a nainstaluješ si toho SAMP clienta no :)
Ahoj prosím vás stáhnul jsem si tady SAMP client 0.3c.Spustím v pohodě.Vyhledám server. Kliknu na něj dvakrát ale nepřihlásí mě to do hry napíše to vložte disk. Hru mam cracklou . Před rokem jsem měl to samí a samp jsem normálně bez problému pařil. prosím
There are a number of factors that influence the behavior and strength of FRC in flexure. These include: type of fiber, fiber length (L), aspect ratio (L/df) where df is the diameter of the fiber, the volume fraction of the fiber (Vf), fiber orientation and fiber shape, fiber bond characteristics (fiber deformation). Also, factors that influence the workability of FRC such as W/C ratio, density, air content and the like could also influence its strength. The ultimate strength in flexure could vary considerably depending upon the volume fraction of fibers, length and bond characteristics of the fibers and the ultimate strength of the fibers. Depending upon the contribution of these influencing factors, the ultimate strength of FRC could be either smaller or larger than its first cracking strength.
The nonlinear portion between A and B exists, only if a sufficient volume fraction of fibers is present. For low volume fraction of fibers (Vf
Two concepts are proposed in the literature for explaining the factors that affect the magnitude of the "first cracking strength or proportional limit". One concept relates the "first cracking strength" to the spacing of the fibers in the composite [Romualdi and Batson 1963; Romualdi and Mandel 1964]. The other concept is based on the mechanics of the composite materials and relates the "proportional limit" to the volume fraction of the fiber, aspect ratio and fiber orientation.
In the fiber spacing concept, it is stipulated that the volume fraction of fibers and fiber aspect ratio must be such that there is a fiber overlap; however, except for this, the fiber aspect ratio L/df which has a significant effect on the flexural strength of FRC is not a parameter in the fiber spacing approach. Experimental results by some investigators [Edington et al. 1974; Swamy and Mangat 1974] tend to show that the fiber spacing concept does not accurately predict the first cracking strength of fiber-reinforced concrete. Additional discussion of the spacing concept can be found in Hannant's book [Hannant 1978].
The law of composite materials is believed to be simple and is proven experimentally [Shah and Rangan 1971] to be more accurate for the prediction of first cracking strength in comparison with the fiber spacing concept. The composite materials approach is based on the assumptions that the fibers are aligned in the direction of the load, the fibers are bonded to the matrix, and the Poisson's ratio of the matrix is zero. In the law of composite materials, the effect of fibers on the cracking behavior of FRC composites can be viewed similarly to conventional reinforcing steel in concrete members. However, because the fibers are randomly distributed, an efficiency factor is commonly multiplied by the volume fraction of fibers to account for their random distribution. The efficiency factor was studied in the literature and was observed to vary between 40% and 80% [Romuldi and Mandel 1964; Nielsen and Chen 1968].
where fcc is the ultimate strength of the fiber composite, fm is the maximum strength of the plain matrix (mortar or concrete), A and B are constants which can be determined experimentally. For plain concrete, A = 1 and B = 0. The constant B accounts for the bond strength of the fibers and randomness of fiber distribution. Swamy et al. [1974a] established values for the constants A and B as 0.97 and 4.94 for the ultimate flexural strength of steel fiber-reinforced concrete and 0.843 and 4.25 for its first cracking strength.
A comparative evaluation of the static flexural strength for concretes with and without four different types of fibers: hooked-end steel, straight steel, corrugated steel, and polypropylene fibers was conducted by Ramakrishnan et al.[1989a]. The fibers were tested at 0.5, 1.0, 1.5 and 2.0% by volume. It was reported that maximum quantity of hooked-end fibers that could be added without causing balling was limited to 1.0 percent by volume. Compared to plain concrete, the addition of fibers increased the first cracking strength (15 to 90 percent) and static flexural strength (15 to 129 percent). Compared on equal basis of 1.0 percent by volume, the hooked-end steel fiber contributed to the highest increase, and the straight fibers provided the least appreciable increase in the above mentioned properties.
Johnston and Zemp [1991] investigated the flexural performance under static loads for nine mixtures, Table 5.1, using sets of 15 specimens for each mixture. Each set of 102 x 102 x 356 mm (4 x 4 x 14 in.) specimens were prepared from five nominally identical batches and tested under third point loading over a 305 mm (12 in.) span. First crack strengths defined in ASTM C 108 as the point on the load-deflection curve at which the form of the curve first becomes nonlinear, and ultimate strength based on the maximum flexural load (ASTM C 78) were established for the eight fibrous concretes, with only ultimate strength for the plain concrete control. The ultimate strengths based on the maximum load was only slightly greater (2.1% on average) than the first crack strength, with a maximum of 4.2% for mixture 3, containing 1.5% fibers. The deflection at maximum load was likewise little different from the first crack deflection. Trends or relationships involving the first crack strengths were therefore similar to those involving ultimate strengths. Note that this may not be the case for fiber-matrix combinations that produce multiple peaks on the load-deflection curve with the maximum load at deflection much higher than the first crack deflection [Johnston and Carer 1989]. The results of Johnston's work indicated that increasing the fiber content from 0.5 to 1.5% had a significant beneficial effect on the first crack (and ultimate) strengths despite the negative influence of increasing w/c and w/(c+f). The increase in first crack strength of 31%, unadjusted for the differences in w/c and w/(c+f) is quite large, since it is widely believed that increasing fiber content has only a minor effect on first crack strength for many of the types of fiber in current use. With the adjustment in w/c and w/(c+f), for 1.5% of SW(75) fibers in Table 5.1, the increase is 63% over the value for 0.5% of the same fibers.
Fiber content seems to be the parameter that is of primary importance in determining the first-crack and ultimate strengths under static flexure loading. Fiber aspect ratio and fiber type are of secondary importance in practical concretes where increasing the aspect ratio or changing the type (steel composition, surface area, surface texture, etc.) in a manner that increases water demand may tend to counteract any improvements in strength attributable to changes in these fiber parameters.